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Arti�cial boundary method for the exterior Stokes �ow
in three dimensions

Chunxiong Zheng∗;† and Houde Han

Department of Mathematical Sciences; Tsinghua University; Beijing 100084; People’s Republic of China

SUMMARY

In this paper, the arti�cial boundary method is considered for the numerical simulation of the exterior
Stokes �ow in three dimensions. First, an exact relation between the normal stress and the velocity �eld
is obtained on a spherical arti�cial boundary. With the relation speci�ed on the arti�cial boundary, the
original problem is reduced to a new one only de�ned on a �nite domain. After that, an variational
problem equivalent to the reduced problem is derived. By truncating the series term in the formulation,
a sequence of approximate variational problems are obtained, which can then be solved with a suitable
�nite-element scheme. Finally, a numerical example is presented to show the performance of the method.
Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Among all the numerical methods for solving the PDEs de�ned on some unbounded domain,
the arti�cial boundary method may be the most popular one. The key idea of this method
is to make the computational domain �nite by introducing some arti�cial boundary and then
specify a boundary condition on the arti�cial boundary to obtain a reduced problem only
de�ned on the �nite domain. Generally, this boundary condition should be chosen carefully,
so that the reduced problem is not only well posed, but also highly accurate to the original
one.
Many mathematicians have developed this method for di�erent problems with di�erent

techniques in the last three decades. For example, Engquist and Majda [1], Bayliss and Turkel
[2] considered the �rst-order hyperbolic equations and some other wave-like equations; Han
and Wu [3], Yu [4] designed various types of arti�cial boundary conditions for the exterior
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Laplace equation; Feng [5], Goldstein [6] obtained the non-re�ecting boundary conditions
for the reduced wave equation; Halpern and Schatzman [7], Han and Bao [8] discussed
the incompressible �ow in a channel; Grote and Keller [9], Alpert et al. [10] considered
the exterior problem of time-dependent hyperbolic equation, and so on. In Reference [11],
Guirguis obtained a third-order local arti�cial boundary condition for the exterior Stokes �ow
on a spherical arti�cial boundary. There are, to the authors’ knowledge, no other reports on
this subject.
The main goal of this paper is to develop the arti�cial boundary method for the exterior

Stokes �ow in three dimensions. In Section 2, some results on vectorial spherical harmonics
will be given. In Section 3, the derivation of an exact arti�cial boundary condition will be
presented step by step. In Section 4, a mixed variational problem is given for the reduced
problem after the boundary condition is speci�ed on the spherical arti�cial boundary. By trun-
cating the series term in the formulation, a sequence of approximate variational problems with
increasing accuracy are obtained. These approximate problems can be solved with some suit-
able numerical scheme. In Section 5, a numerical example is presented to test the performance
of the designed method. A conclusion is drawn in the last section.

2. SOME RESULTS ON VECTORIAL SPHERICAL HARMONICS

Throughout this paper, bold symbols are used to denote some vectorial �elds or spaces.
For any non-negative integer l, denote Yml as the mth spherical harmonic of order l. Then
{Yml ; l¿0;−l6m6l} constitutes an orthogonal basis of space L2(S) where S denotes the unit
spherical surface (see Reference [12, p. 24]). Let

Hm
l = r

lY ml ; −l6m6l
then Hl= {Hm

l ; −l6m6l} constitutes a basis of all l-order homogeneous harmonic polyno-
mials. Set

Im
l ≡∇Hm

l+1; l¿0; −(l+ 1)6m6l+ 1
Tm
l ≡∇Hm

l ×x; l¿1; −l6m6l
Nm
l ≡ (2l− 1)Hm

l−1x − r2∇Hm
l−1; l¿1; −(l− 1)6m6(l− 1)

where x is the location vector. In addition, let Iml , T
m
l and N

m
l be the traces of these vectorial

polynomials on S, i.e.

Iml =
Im
l

rl
; Tml =

Tm
l

rl
; Nml =

Nm
l

rl

These functions are called l-order vectorial spherical harmonics.

Lemma 2.1
Let n=x=r be the unit vector in the radial direction. The following results hold:

∇
(
∇ · I

m
l

rl+1

)
=
(l+ 1)(2l+ 1)

rl+3
Nml+2 (1)
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∇
(
∇ · T

m
l

rl+1

)
=0 (2)

∇
(
∇ · N

m
l

rl+1

)
=0 (3)

(
∇ · I

m
l

rl+1

)
n=− 1

rl+2

{
(l+ 1)(2l+ 1)

2l+ 3
Iml +

(l+ 1)(2l+ 1)
2l+ 3

Nml+2

}
(4)

(
∇ · T

m
l

rl+1

)
n=0 (5)

(
∇ · N

m
l

rl+1

)
n=0 (6)

∇ Iml
rl+1

· n=− 1
rl+2

{
1

2l+ 3
Iml +

(l+ 1)(2l+ 1)
2l+ 3

Nml+2

}
(7)

∇ Tml
rl+1

· n=− 1
rl+2

Tml (8)

∇ Nml
rl+1

· n=− l+ 1
rl+2

Nml (9)

The proof of this lemma is given in the appendix.

Lemma 2.2
The families (Iml ;T

m
l ;N

m
l ) for all l¿0 form an orthogonal basis of L2(S) and

∫
S
|Iml |2 ds= (l+ 1)(2l+ 3); l¿0

∫
S
|Tml |2 ds= l(l+ 1); l¿1

∫
S
|Nml |2 ds= l(2l− 1); l¿1

This result can be found in Reference [12, p. 37]

3. EXACT NON-LOCAL ARTIFICIAL BOUNDARY CONDITION

Consider the viscous incompressible �ow generated by a body moving with a constant velocity.
If the Reynolds number of the �ow is small, the �uid motion in the steady state can be
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approximately described with the exterior problem of the Stokes �ow:

−��u+∇p= f ; x∈�e (10)

∇ · u=0; x∈�e (11)

u=U; x∈� (12)

u→ 0; p→ 0; r= |x|→+∞ (13)

Here � is the surface of the moving body; �e is the exterior unbounded domain with bound-
ary �; � is the kinematic viscosity of the �uid; U is the constant velocity of the mov-
ing body; f is the body force function assumed to have compact support, namely, there
is a spherical arti�cial boundary �R with radius R¿0 such that �R⊂�R and supp(f)⊂�R
if we set �R≡�e ∩{x | |x|¡R}. On the domain �eR≡�e\ ��R outside of �R, the following
hold

−��u+∇p=0; x∈�eR (14)

∇ · u=0; x∈�eR (15)

u→ 0; p→ 0; r= |x|→+∞ (16)

This problem cannot be solved independently since no suitable boundary condition is speci�ed
on �R. If the value of the velocity �eld on �R is given, the solution of problem (14)–(16)
can be obtained analytically.
Following the idea of Kelvin (see Reference [13, p. 351]), u and p are expressed by the

summations

u=
+∞∑
l=0
ul; p=

+∞∑
l=0
pl

For each integer l¿0, (ul; pl) are assumed to satisfy equations (14)–(16); moreover, ul has
the following expression:

ul=Gl + cl(r2 − R2)∇(∇ ·Gl) (17)

where Gl is a vectorial harmonic function such that r2l+1Gl is an l-order homogeneous
vectorial harmonic polynomial; cl is some constant to be determined.
Since

∇ · ul =∇ ·Gl + cl
{
2r · ∇(∇ ·Gl) + (r2 − R2)�(∇ ·Gl)

}
=∇ ·Gl + 2cl{−(l+ 2)}∇ ·Gl= {1− (2l+ 4)cl}∇ ·Gl (18)

by the incompressible condition (15), cl is determined as

cl=
1

2l+ 4
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In addition,

�ul =�Gl + cl{�(r2 − R2)∇(∇ ·Gl)
+2∇(r2 − R2) · ∇∇(∇ ·Gl) + (r2 − R2)�∇(∇ ·Gl)}

= cl{6∇(∇ ·Gl) + 4r · ∇∇(∇ ·Gl)}
= cl{6∇(∇ ·Gl)− 4(l+ 3)∇(∇ ·Gl)}

=−(4l+ 6)cl∇(∇ ·Gl)= − 2l+ 3
l+ 2

∇(∇ ·Gl) (19)

Substituting Equation (19) into (14) gives

∇
(
pl + �

2l+ 3
l+ 2

∇ ·Gl
)
=0

Thus by Condition (16), pl is determined as

pl= − � 2l+ 3
l+ 2

∇ ·Gl (20)

By Lemma 2.2, on the arti�cial boundary �R, u(R; �; ’) can be expanded as

u(R; �; ’)=
+∞∑
l=0

l+1∑
m=−(l+1)

Aml I
m
l +

+∞∑
l=1

l∑
m=−l

Bml T
m
l +

+∞∑
l=1

l−1∑
m=−(l−1)

Cml N
m
l

where

Aml =
1

(l+ 1)(2l+ 3)

∫
S
u(R; �; �) · �Iml ds

Bml =
1

l(l+ 1)

∫
S
u(R; �; �) · �Tml ds

Cml =
1

l(2l− 1)
∫
S
u(R; �; �) · �Nml ds:

In the following (Aml ; B
m
l ; C

m
l ) are called the Fourier coe�cients of u on �R. Let

Gl=




(
R
r

)l+1 l+1∑
m=−(l+1)

Aml I
m
l ; l=0

(
R
r

)l+1 l+1∑
m=−(l+1)

Aml I
m
l +

(
R
r

)l+1 l∑
m=−l

Bml T
m
l +

(
R
r

)l+1 l−1∑
m=−(l−1)

Cml N
m
l ; l¿0

(21)
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It is straightforward to verify that formulae (17) and (20) give the solution of problem
(10)–(13) with the boundary value u(R; �; ’).
The main goal of the following is to build up a relation between the normal stress and the

velocity �eld on the arti�cial boundary �R. The stress tensor � of an incompressible viscous
�ow with velocity �eld u and pressure �eld p is de�ned by

�(u; p)=−pI+ 2��(u)

where I is the second-order unit tensor and

�(u)=
∇u+ (∇u)T

2

is the rate-of-distortion tensor. Since on �R

∇ul =∇Gl + cl{∇(r2 − R2)⊗∇(∇ ·Gl) + (r2 − R2)∇∇(∇ ·Gl)}
=∇Gl + 2clr⊗∇(∇ ·Gl)

2�(ul) =∇ul + (∇ul)T =∇Gl + (∇Gl)T + 2clr⊗∇(∇ ·Gl) + 2cl∇(∇ ·Gl)⊗ r

thus for Stokes �ow, on �R it holds

n · �(ul; pl) =−pln+ �n · 2�(ul)

= �
2l+ 3
l+ 2

(∇ ·Gl)n − (l+ 1)�
R

Gl + �∇Gl · n

+2cl�R∇(∇ ·Gl)− cl(2l+ 4)�(∇ ·Gl)n

= �
{
l+ 1
l+ 2

(∇ ·Gl)n − (l+ 1)
R

Gl +
R
l+ 2

∇(∇ ·Gl) +∇Gl · n
}

By Lemma 2.1, a simple computation shows that:

1. if Gl= Iml =r
l+1, then on �R

n · �(ul; pl) = �
{
l+ 1
l+ 2

{
− (l+ 1)(2l+ 1)

2l+ 3
Iml
Rl+2

− (l+ 1)(2l+ 1)
2l+ 3

Nml+2
Rl+2

}

− (l+ 1)
Rl+2

Iml +
1

l+ 2
(l+ 1)(2l+ 1)

Rl+2
Nml+2

+
1
Rl+2

{
− 1
2l+ 3

Iml − (l+ 1)(2l+ 1)
2l+ 3

Nml+2

}}

=− 1
Rl+2

2l2 + 4l+ 3
l+ 2

�Iml
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2. if Gl=Tml =r
l+1, then on �R

n · �(ul; pl)= − l+ 2
Rl+2

�Tml

3. if Gl=Nml =r
l+1, then on �R

n · �(ul; pl)= − 2l+ 2
Rl+2

�Nml

Compose all terms for l¿0, the normal stress on �R is given by

n · �(u; p) =− �
R

{
+∞∑
l=0

l+1∑
m=−(l+1)

2l2 + 4l+ 3
l+ 2

Aml I
m
l +

+∞∑
l=1

l∑
m=−l

(l+ 2)Bml T
m
l

+
+∞∑
l=1

l−1∑
m=−(l−1)

(2l+ 2)Cml N
m
l

}
≡K∞(u; p) (22)

This relation can serve as an exact arti�cial boundary condition on �R. Specifying relation
(22) on �R presents a reduced Stokes problem only de�ned on the bounded domain �R:

−��u+∇p= f ; x∈�R (23)

∇ · u=0; x∈�R (24)

u=U; x∈� (25)

n · �(u; p)=K∞(u; p); x∈�R (26)

Obviously, the solution of this problem is a restriction of that of problem (10)–(13) to sub-
domain �R of �e.

4. MIXED VARIATIONAL PROBLEM AND ITS APPROXIMATION

Denote

V0≡{v∈H1(�R) | v= 0; on �}
VU≡{v∈H1(�R) | v=U; on �}
Q≡L2(�R)

Then problem (23)–(26) is equivalent to the following mixed variational problem:
Find u×p∈VU×Q such that

A(u; v) +B∞(u; v) + C(v; p)=F(v); ∀v∈V0
C(u; q)=0; ∀q∈Q

(27)
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where

A(u; v) = 2�
∫
�R
�(u) : �(v) d�

B∞(u; v) = �R

{
+∞∑
l=0

l+1∑
m=−(l+1)

(l+ 1)(2l+ 3)
2l2 + 4l+ 3
l+ 2

Aml �D
m
l

+
+∞∑
l=1

l∑
m=−l

l(l+ 1)(l+ 2)Bml �E
m
l +

+∞∑
l=1

l−1∑
m=−(l−1)

2l(l+ 1)(2l− 1)Cml �Fml
}

C(v; q)= −
∫
�R
q∇ · v d�

F(v)=
∫
�R
f · v d�; ∀u∈H1(�R); ∀v∈H1(�R); ∀q∈L2(�R)

In the above formulae (Aml ; B
m
l ; C

m
l ) and (D

m
l ; E

m
l ; F

m
l ) are the Fourier coe�cients of vector u

and v on the arti�cial boundary �R.
In the numerical implementation, the series term in the expression of the bilinear form

B∞(u; v) should be truncated. Denote the resulting approximate bilinear form as

BN (u; v) = �R

{
N∑
l=0

l+1∑
m=−(l+1)

(l+ 1)(2l+ 3)
2l2 + 4l+ 3
l+ 2

Aml �D
m
l

+
max(1; N )∑
l=1

l∑
m=−l

l(l+ 1)(l+ 2)Bml �E
m
l +

N∑
l=1

l−1∑
m=−(l−1)

2l(l+ 1)(2l− 1)Cml �Fml
}

In addition, suppose that VhU is some discrete �nite-element space of VU, V
h
0 is obtained with

the similar discretization method as that of VhU and Q
h is some �nite element space of Q.

Replacing {V0;VU; Q;B∞(· ; ·)} in mixed variational problem (27) with {Vh0 ;VhU; Qh;BN (· ; ·)}
presents the following approximate discrete variational problem.
Find uhN ×Ph ∈VhU×Qh such that

A(uhN ; v) +BN (uhN ; v) + C(v; ph)=F(v); ∀v∈Vh0
C(uhN ; q)=0; ∀q∈Qh

(28)

The solution of this problem is taken as a numerical approximation of problem (10)–(13).

Remark 4.1
B∞(· ; ·) and BN (· ; ·) are real bilinear forms, though it seems they were complex ones. Since
for any l¿0, it holds

A−m
l =(−1)m �Aml ; B−m

l =(−1)m �Bml ; C−m
l =(−1)m �Cml

D−m
l =(−1)m �Dml ; E−m

l =(−1)m �Eml ; F−m
l =(−1)m �Fml
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thus
l+1∑

m=−(l+1)
Aml �D

m
l =

l+1∑
m=0

′ (Aml �D
m
l + �Aml D

m
l )=2

l+1∑
m=0

′ Real(Aml �D
m
l )

l∑
m=−l

Bml �E
m
l =

l∑
m=0

′ (Bml �E
m
l + �Bml E

m
l )=2

l∑
m=0

′ Real(Bml �E
m
l )

l−1∑
m=−(l−1)

Cml �F
m
l =

l−1∑
m=0

′ (Cml �F
m
l + �Cml F

m
l )=2

l−1∑
m=0

′ Real(Cml �F
m
l )

where ′ denotes a multiplication of factor 1
2 when m=0.

Remark 4.2
Spaces Vh and Qh should be consistent, namely, the two spaces should satisfy the uniform
inf–sup condition.

5. NUMERICAL EXAMPLE

Consider the exterior Stokes �ow generated by a sphere of radius a moving with a constant
speed U . Assume the viscous and incompressible �ow is steady, and then this problem can
be formulated as

−��u+∇p= 0; x∈�e
∇ · u=0; x∈�e
u=U; x∈�
u→ 0; p→ 0; r= |x|→+∞

where �= {x| |x|= a}; �e is the unbounded domain with boundary of �; � is the kinematic
viscosity; U=(U; 0; 0). Under the Cartesian co-ordinates frame x=(x1; x2; x3), the solution
can be expressed by

u1 =U
[
3
4
a
r
+
a3

4r3
+
3(r2 − a2)ax21

4r5

]

u2 =U
[
3(r2 − a2)ax1x2

4r5

]

u3 =U
[
3(r2 − a2)ax1x3

4r5

]

p=
3
2
�
Uax1
r3

where r≡ |x|=
√
x21 + x

2
2 + x

2
3.
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Table I. Mesh information.

Mesh Node number Cell number Mesh size

A 3811 2379 0.5
B 27 791 18 923 0.25

Table II. Maximal relative error of the velocity �eld on the mesh grids.

Mesh N =2 N =3 N =4 N =5 N =6

A 0.0558 0.0207 0.0118 0.0102 0.0102
B 0.0564 0.0207 0.0049 0.0034 0.0023

Table III. Maximal relative error of the pressure �eld on the mesh grids.

Mesh N =2 N =3 N =4 N =5 N =6

A 0.3918 0.1725 0.1323 0.1267 0.1264
B 0.3646 0.1212 0.0562 0.0486 0.0487

Table IV. Computational drag coe�cients. The theoretical value is (12; 0; 0).

Mesh N=2 N=3 N=4 N=5 N=6

A 11.685 11.968 11.996 11.998 11.998
−0:076 −0:028 −0:024 −0:024 −0:024
−0:076 −0:015 −0:013 −0:013 −0:013

B 11.690 11.968 11.996 11.997 11.997
−0:058 −0:012 −0:007 −0:007 −0:007
−0:058 −0:017 −0:013 −0:013 −0:013

Now introduce a spherical arti�cial boundary �R of radius R=2a. Since the goal of this
example is to test the performance of the arti�cial boundary condition, it is better to shift the
location of the spherical surface to violate the symmetry in the set-up of this problem. For
instance, relocate the centre of the spherical surface to point [d d d], where d is some real
number satisfying |d|¡a. Then

�R= {x=(x1; x2; x3) | (x1 − d)2 + (x2 − d)2 + (x3 − d)2 =4a2}
A P2×P1 tetrahedron mixed �nite element is adopted. In the computation, let a=1, �=1,
U =1 and d=−0:4. Table I shows some information on the mesh generation. Tables II
and III show the maximal relative errors of the velocity �eld and the pressure �eld. The
di�erent values of N represent the di�erent approximate variational problems. The larger
is N , the more accurate is the approximate variational problem. Since the Reynolds num-
ber Re=2aU=�=2, the theoretical drag coe�cient is C=(12; 0; 0). Table IV shows the
computational drag coe�cients.
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From Tables II and III, it can be observed that when a �ner mesh could not present a
much more accurate numerical solution, a higher-accuracy approximate variational problem
should be used in the computation. For example, when N =2, the errors of the computa-
tional velocity and pressure �elds are almost the same for the two di�erent meshes. But
when N =6, even with Mesh A, the coarser one, used in the computation, the error of ve-
locity �eld decreases to 0:0102=0:0558 ≈ 18% and the error of pressure �eld decreases to
0:1264=0:3918 ≈ 32%.
On the other side, when a higher-accuracy approximate variational problem could not

present a much better answer, a �ner mesh should be employed. For example, when Mesh A is
used, the error of the velocity �eld for N =6 is the same as that for N =5. But when Mesh B
is used, the error decreases to 0:0023=0:0034 ≈ 68% from N =5 to 6. The analogous phe-
nomenon can be observed from the computational results of the pressure �eld. When Mesh A
is used in the computation, the error of the pressure �eld decreases to 0:1323=0:1725 ≈ 77%
from N =3 to 4; but when Mesh B is used, the error decreases to 0:0562=0:1212 ≈ 46%. A
great improvement occurs.
These observations are quite compatible with the following analysis. Since the error of the

numerical solution originates from two sources: one is the approximation of the variational
problem, the other is the employment of the �nite-element scheme. When one is relatively
smaller, the other dominates the error.
Another observation is that the computational drag coe�cient does not seem too sensitive

to the accuracy of the numerical solution. Even a lower-accuracy problem with a relatively
coarse mesh can give a quite satisfactory drag coe�cient answer.

6. CONCLUSION

The numerical simulation for the exterior Stokes �ow with the arti�cial boundary method has
been considered in this paper. An exact relation with the normal stress and the velocity �eld
involved is obtained on an introduced spherical arti�cial boundary. Imposing this relation on
the arti�cial boundary leads to a reduced problem de�ned on a �nite computational domain.
It can then be solved with some numerical scheme. A simple numerical example is presented
and its results shows the e�ectiveness of this method.

APPENDIX: PROOF OF LEMMA 2.1

Proof
From the de�nition of Im

l , T
m
l and Nm

l , it obviously holds

x ·Im
l =(l+ 1)H

m
l+1; x ·Tm

l =0; x ·Nm
l = lr

2Hm
l−1

∇ ·Im
l =0; ∇ ·Tm

l =0; ∇ ·Nm
l = l(2l+ 1)H

m
l−1

and

Hm
l x=

r2

2l+ 1
Im
l−1 +

1
2l+ 1

Nm
l+1
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Since

∇ · I
m
l

rl+1
=∇ · Im

l

r2l+1
= − (2l+ 1) 1

r2l+3
x ·Im

l +
1
r2l+1

∇ ·Im
l = − (l+ 1)(2l+ 1)

r2l+3
Hm
l+1

∇ · T
m
l

rl+1
=∇ · Tm

l

r2l+1
= − (2l+ 1) 1

r2l+3
x ·Tm

l +
1
r2l+1

∇ ·Tm
l =0

∇ · N
m
l

rl+1
=∇ · Nm

l

r2l+1
= − (2l+ 1) 1

r2l+3
x ·Nm

l +
1
r2l+1

∇ ·Nm
l =0

formulae (2)–(6) follow. In addition,

∇
(
∇ · I

m
l

rl+1

)
=∇

(
∇ · Im

l

r2l+1

)
=−(l+ 1)(2l+ 1)

{
−(2l+ 3) 1

r2l+5
Hm
l+1x+

1
r2l+3

∇Hm
l+1

}

=
(l+ 1)(2l+ 1)

r2l+5
{(2l+ 3)Hm

l+1x − r2∇Hm
l+1}

=
(l+ 1)(2l+ 1)

r2l+5
Nm
l+2 =

(l+ 1)(2l+ 1)
rl+3

Nml+2

Formula (1) holds. Moreover,

∇ Iml
rl+1

· x=∇ Im
l

r2l+1
· x=∇

(
x ·Im

l

r2l+1

)
− Im

l

r2l+1

= (l+ 1)
{
−(2l+ 1) 1

r2l+3
Hm
l+1x+

1
r2l+1

Im
l

}
− Im

l

r2l+1

= (l+ 1)
{

2
2l+ 3

1
r2l+1

Im
l − 2l+ 1

2l+ 3
1
r2l+3

Nm
l+2

}
− Im

l

r2l+1

=− 1
rl+1

{
1

2l+ 3
Iml +

(l+ 1)(2l+ 1)
2l+ 3

Nml+2

}

∇ Tml
rl+1

· x=∇ Tm
l

r2l+1
· x=∇

(
x ·Tm

l

r2l+1

)
− Tm

l

r2l+1
= − Tml

rl+1

∇ Nml
rl+1

· x=∇Nm
l

r2l+1
· x=∇

(
x ·Nm

l

r2l+1

)
− Nm

l

r2l+1

= l
(
−(2l− 1) 1

r2l+1
Hm
l−1x+

1
r2l−1

∇Hm
l−1

)
− Nm

l

r2l+1
= − l+ 1

rl+1
Nml

formulae (7)–(9) follow.
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